Sanatçının Matematiğe İlgisi

Ben Maurits Cornelis Escher’i çok geç öğrendim. Aslında, çizimlerini hep görürdüm ama doğrusu çizerini hiç merak etmemiştim. Eğer siz de bu durumdaysanız, yani tanımıyorsanız, hemen bir tarama motorunun görseller kısmından Escher yazıp bakın, çıkanların birçoğunu bir yerlerde gördüğünüzü fark edeceksiniz. Yani bilip de bilmediğimiz bir sanatçıdır Escher. (1)

1898 Hollanda doğumlu olan sanatçı okul yıllarında grafiğe yönelir. Kısa sürede ünlenen sanatçı, ülkesi dışında İtalya, İspanya, İsviçre ve Belçika’da da yaşadı. Bu süreç, çeşitli grafik akımlarıyla tanışmasına ve kendi tarzını da geliştirmesinde etkili olur.

Ama sanatında kırılma noktası 1930’lu yıllarda kardeşi aracılığıyla okuduğu matematik makaleleriyledir. Özelikle Haag ve Polya’nın makaleleri Escher üzerinde etkili olmuştur. Haag, yazısında düzlemin düzenli doldurulması için matematiksel bir formül öneriyordu. Ona göre benzer dışbükey çokgenlerle düzlemin düzenli doldurulması olasıydı. Bu tanım Escher’in kafasındaki birçok soruya yanıt olmuştu ve bu yönde çok sayıda çizim gerçekleştirdi. Ancak sonrasında, tanımdaki “dışbükey” sözünün doğru olmadığını düşünüp, farklı desenlerle denedi ve ünlü “reptiles” (sürüngenler) yapıtı ortaya çıktı. Sonrasında Haag’ın formülü değiştirildi.

Burada iki yönlü bir etkileşim söz konusudur: matematikçinin formülü sanatçının önünü açmış, yeni eserler ortaya çıkmış; sonrasında ise pratikte sanatçı formülün sınırlayıcılığından rahatsız olup farklı arayışlara girmiş ve sonuçta yapıtlarıyla matematiksel formülün değişimini sağlamıştır. Escher’in bu yöndeki çalışmaları arasında en etkileyici olanları hiperbolik düzlemi kullandığı “Circle Limit” (Çember Limiti) serisidir. Burada matematikçi Poincare’nin katkılarını da anmak gerekir.

Macar Matematikçi George Polya da Escher’i etkileyenler arasındadır. Polya düzlemi simetri gruplarıyla düzenli doldurma üzerinde çalışıyordu. Escher, Polya’nın formülasyonuyla dörtte birlik dönüşler tekniğiyle ünlü “Development I” (Gelişme I) eserini ortaya koydu. Bunun üzerine yeni bir kitaba başlayan Polya, ne yazık ki bitiremeden öldü. Escher’den ne denli etkilendiğini bugün kitabın taslağından öğreniyoruz.

Escher’in bir diğer çalışması ise olanaksızlıklar üzerine olanlardır. Escher’in döngüsel paradoksları yaratmak için kurduğu hiyerarşik düzenlerde sürekli yukarı ya da aşağı hareket etseniz de yine başlangıç noktasına gelirsiniz. Bu gibi döngülerin  Bach’ın müziğinde de yer aldığı söylenir; Bach müziğini bestelerken kanonlar sayesinde kurduğu döngüler içinde notaların harflendirilme sisteminden yararlanarak kendi adını sonsuz kere zikrettirir….Bu yüzyılın en önemli matematik makalelerinden birini yazan Gödel, matematiği dizgeleştirme çabalarının sonuç vermeyeceğini, kendi içinden çıkıp kendine dönen bir paradoksun varlığını göstererek kanıtlamıştı. Escher’in Resim Galerisi adlı eseri kabaca bu kanıtın görsel ifadesidir. Önemli bir teorem ve ilginç bir resim aynı anlatıma ulaşıyor! (Bkz. Hofstadler’in kitabı).

Matematikle sanat ilk bakışta birbirlerinden oldukça farklı görünse de bu farklılıklar alanların ortaklıklarına engel değil. Matematik de sanat da, diğer bilimler gibi, insanın içine doğduğu ortamı ve bu ortam içinde kendisine ne olduğunu anlama çabası sonucunda doğmuştur.  Zaman zaman doğaya aykırı görünseler de iki alan da doğanın soyutlaması, yorumu hatta yeniden sunumudur. Sayılar denklemler bu halleriyle doğada yokturlar ama resimler ve heykeller gibi doğayı betimler ve düşüncemize yeniden sunarlar. (2)

Bence bilimler arasındaki bölünmeler oldukça yapay. Bilgimiz arttıkça sınırlar belirsizleşecek gibi.


1) Escher ile ilgili Türkçe üç kaynaktan yeteri kadar bilgi alınabilir. Birincisi, Douglas Hofstadter’in“ Gödel, Escher, Bach: Bir Ebedi Gökçe Belik” isimli Pinhan yayınlarından çıkan kitabı; diğeri Remzi yayınlarından çıkan “Grafik Yapıtları” adlı kendi kitabı. Sonuncusu ise Bilim ve Gelecek dergisinin Haziran 2015’te yayınlanan 136. Sayısındaki iki çeviri makale.  Bu yazının hazırlarken de, adı geçen makale ve kitaplardan çok yararlandım.

2) http://akifaltundal.net/tur/content/view/380/345/

İzge Günal
16/11/2015 Pazartesi
Bu yazı Sol Haber Portalı‘ndan alınmıştır.
Reklamlar

One thought on “Sanatçının Matematiğe İlgisi

Bir Cevap Yazın

Aşağıya bilgilerinizi girin veya oturum açmak için bir simgeye tıklayın:

WordPress.com Logosu

WordPress.com hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap / Değiştir )

Twitter resmi

Twitter hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap / Değiştir )

Facebook fotoğrafı

Facebook hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap / Değiştir )

Google+ fotoğrafı

Google+ hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap / Değiştir )

Connecting to %s